FEASIBILITY FOR MAPPING CARTILAGE T1 RELAXATION TIMES IN THE DISTAL METACARPUS3/METATARSUS3 OF THOROUGHBRED RACEHORSES USING DELAYED GADOLINIUM-ENHANCED MAGNETIC RESONANCE IMAGING OF CARTILAGE (dGEMRIC): NORMAL CADAVER STUDY

Authors
Ann Carstens, Robert M. Kirberger, Mark Velleman, Leif E. Dahlberg, Lizelle Fletcher and Eveliina Lammentausta
Date
July/August 2013
Journal
Veterinary Radiology and Ultrasound
Volume
54
Number
4
Pages
365-372

Osteoarthritis of the metacarpo/metatarsophalangeal joints is one of the major causes of poor performance in horses. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) may be a useful technique for noninvasively quantifying articular cartilage damage in horses. The purpose of this study was to describe dGEMRIC characteristics of the distal metacarpus3/metatarsus3 (Mc3/Mt3) articular cartilage in 20 cadaver specimens collected from normal Thoroughbred horses. For each specimen, T1 relaxation time was measured from scans acquired precontrast and at 30, 60, 120, and 180 min post intraarticular injection of Gd-DTPA2- (dGEMRIC series). For each scan, T1 relaxation times were calculated using five regions of interest (sites 1–5) in the cartilage. For all sites, a significant decrease in T1 relaxation times occurred between precontrast scans and 30, 60, 120, and 180 min scans of the dGEMRIC series (P < 0.0001). A significant increase in T1 relaxation times occurred between 60 and 180 min and between 120 and 180 min post Gd injection for all sites. For sites 1–4, a significant increase in T1 relaxation time occurred between 30 and 180 min postinjection (P < 0.05). Sites 1–5 differed significantly among one another for all times (P < 0.0001). Findings from this cadaver study indicated that dGEMRIC using intraarticular Gd-DTPA2- is a feasible technique for measuring and mapping changes in T1 relaxation times in equine metacarpo/metatarsophalangeal joint cartilage. Optimal times for postcontrast scans were 60–120 min. Future studies are needed to determine whether these findings are reproducible in live horses.